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1. Introduction

  Mesenchymal stem cells (MSCs) are a valuable source for 

clinical application of cells and tissue engineering[1-3]. Source 

of variations arise from whether the cells were derived from 

allogeneic or autologous sources. Autologous sources are more 

appreciated because they eliminate issues such as contamination 

and risk of malignancy[4]. The allogeneic application brings some 

others problems such as possible ineffectiveness[5]. There is a 

body of reports showing that MSCs have a particular function in 

in vitro and in vivo condition. They display immunomodulatory 

functions and inhibit T-lymphocyte proliferation and activation 

and induced by cellular factors[6,7], and respond to injury or 

stress, just like the respond of immune system cells to pathogen 

exposure[8,9], participation in regeneration, immune cell activation 

Previous attempts have indicated that mesenchymal stem cells (MSCs) are a valuable source 

and candidate and new approach for tissue engineering and reproductive medicine. MSCs have 

this potential to be induced and differentiated in an appropriate in vivo and in vitro condition 

toward various cell lineages and then they can be applied in cell therapies and clinical 

applications. During recent two decades, various sources have demonstrated they are a great 

source for MSCs, including bone marrow, the human umbilical cord as well as Wharton’s 

jelly. Due to discarding after birth, easily accessible cells and less ethical concerns, these cells 

have attracted more and more scientists’ attention. Infertility and reproduction diseases have 

provided special opportunity to examine the efficiency of MSCs in this kind of application. 

Based on recent investigations, MSCs embedded in Wharton’s jelly tissue are more appealing 

for cell therapies, especially in infertility treatment purposes. So, differentiation of MSCs 

embedded in Wharton’s jelly tissue into germ layer cells for cell-based therapy purposes is now 

under intensive study. 

Asian Pacific Journal of Reproduction 2018; 7(2): 49-55

Asian Pacific Journal of Reproduction

Journal homepage: www.apjr.net

This is an open access article distributed under the terms of the Creative Commons 
Attribution-Non Commercial-Share Alike 3.0 License, which allows others to remix, 
tweak and buid upon the work non-commercially, as long as the author is credited and 
the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

©2018 Asian Pacific Journal of Reproduction Produced by Wolters Kluwer- Medknow

How to cite this article: Hossein Yazdekhasti, Jalil Hosseini, Zahra Rajabi, 
Maryam Hosseinzadeh Shirzeyli, Fereshte Aliakbari. Germline cells derived from 
mesenchymal stem cells, with the focus on Wharton’s jelly. Asian Pac J Reprod 
2018; 7(2): 49-55.

[Downloaded free from http://www.apjr.net on Thursday, March 22, 2018, IP: 10.232.74.26]



50 HosseinYazdekhasti et al./ Asian Pacific Journal of Reproduction (2018)49-55

or suppression, angiogenesis, remodeling, bactericidal activity and 

cellularrecruitment[10]. MSCs also can be found in different adults 

and birth-associated tissues. This review study focused on some 

of the standard features of MSCs from various sources and their 

differentiation capacity toward germ line cells with an emphasis on 

Wharton’s jelly.

2. Mesenchymal stromal cells

  Mesenchymal stromal cells or stem cells are a great source of 

multipotent stem cells with self-renewal capacity, which have 

the capacity of differentiation into various cell lineages and be 

transdifferentiated toward astrocytes-like cells, hepatocytes and 

neural cells in vitro as well[11,12]. Due to their capacities, they are 

always utilized in tissue regenerative medicine and transplantation 

studies[13-17].

  MSCs are derived from various tissues including bone marrow, 

adipose tissue, adult and fetal tissues and Wharton’s jelly of the 

umbilical cord (Figure 1). They are undifferentiated cells that can 

be mostly found in embryonic and extraembryonic tissues[18]. The 

embryonic tissues containing MSCs are including spleen, fetal bone 

marrow, pancreas, lung, liver, and peripheral blood and the extra-

embryonic structures such as umbilical cord, umbilical cord blood, 

amniotic fluid, placenta and amnion, are containing mesenchymal 

stem cells[2,19].

Figure 1. MSCs features from some sources and their differentiation capacity 

toward germline cells with an emphasis on Wharton’s jelly.

  Based on differentiation potential and proliferation capacity, there 

are variations between fetal and adult MSCs. Fetal MSCs have some 

priorities and advantages over other sources such as faster doubling 

time than adult MSCs, greater expansion capacity in vitro as well 

as longer telomeres[20]. Fetal MSCs don’t have the properties of 

immune suppression, for instance, lack of class栻 human leukocyte 

antigens (HLA 栻), but they seem to synthesize HLA-G, in contrast 

to adult MSCs in which HLA栻is present and HLA-G is absent[21]. 

Overall, fetal MSCs are secreting a slightly different cocktail of 

cytokine than adult MSCs (Table 1)[22]. 

Table 1
Markers of BM-MSC, umbilical cord, and Wharton’s jelly.

Marker BM-MSC Umbilical cord Wharton’s jelly References

HLA-A + + + [68-70]

HLA-B + + + [68,71-73]

HLA-C + + + [68,71,74,75]

HLA-DR - - - [69,70,74,76]

HLA-G + - + [54,77,78]

CD29 + + + [11,27,59,79]

CD44 + + + [11,59,78]

CD73 + + + [11,59,73,78]

CD105 + + + [11,59,78]

CD53  + + + [11,59,78]

CD54 ICAM-1 + -/+a n.a [79-82]

CD56 - - - [11,59,70]

CD58 + - + [11,59]

CD106 VCAM-1 + -/+ + [78,80,81,83]

CD166 ALCAM + + + [69,78,81]

SSEA-1 + - + [59,78]

Oct-04 + -/+ + [59,70,78]

Nanog + + + [59,70,84]

Sox-2 + + + [59,84]

  Two methods have been applied for isolation of MSCs including 

enzymatic digestion and tissue culture (insert method). In order to 

perform enzymatic digestion, after the membrane and veins have 

been removed, collagenase and trypsin are routinely utilized to 

digest the umbilical cord tissue. It has been proposed that trypsin 

and collagenase might damage the Wharton’s jelly, however, this 

method has increased the outcomes of obtained cells[23]. Meanwhile, 

enzymatic digestion is unaffordable with a high risk of contamination 

and takes more time to perform and is not easy to control[24]. 

Mechanical digestion of the cord is an essential step before the onset 

of enzymatic digestion[25,26]. The common point of digestion is the 

use of collagenase-containing caseinase, clostripain, and tryptic 

activities. Type栺collagenase is routinely used for the isolation of 

stromal cells[27]. A combination of collagenase with hyaluronidase 

is critically important because it facilitates the outcomes of matrix 

digestion and shortens the time required for isolation process[26].

   Different independent groups have reported their successful 
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isolated MSCs from umbilical cord using culture method[28,29]. 

Explant of tissue fragments is one of the most primitive techniques 

in cell isolation and propagation in vitro. This approach affects the 

quantity and quality of the isolated cells, but the tissue size should be 

small enough for freely gases and nutrients diffusion[30]. The primary 

explanted culture success rate is directly dependent on the migratory 

ability of the cell type[31]. 

3. MSCs derived from bone marrow

  The first source which was claimed to comprise MSCs was 

bone marrow[32], and MSCs were obtained from bone marrow by 

Friedenstein’s team for the first time[33]. They described these cells 

as a population of cells similar to fibroblast-like colonies with the 

capacity of differentiating toward multiple mesenchymal lineages 

and then Caplan et al[34] called these cells as “mesenchymal stem 

cells”. Finally, Horwitz et al[35] recently referred these cells as 

“multipotent mesenchymal stromal cells”.

   The procedure of sampling from bone marrow is an annoying and 

invasive procedure[36], and along with aging and adolescence, the 

bone marrow-MSCs (BM-MSCs) numbered creases[20]. Meanwhile, 

this should be always considered in mind that the risk of viral 

contamination during the isolation of MSCs from bone marrow is 

still present[37]. Due to all of these reasons, the application of bone 

marrow in cell therapy procedures as a great source of MSCs has 

been limited. Therefore, the applications of other sources which have 

MSCs with a higher proliferative and differentiation potency and 

lower risk of viral contamination have been considered.

  BM-MSCs have the ability of self-renewal and differentiate into 

connective tissues cells such as adipocytes, osteoblasts as well as 

chondrocytes[11,38,39]. They express various cell surface markers 

including CD29, CD44, CD73, CD90, CD105, CD166, CD49e, 

CD51, CD54, CD59, CD71 and CD200, however there are some 

other surface markers which BM-MSCs do not express (such as 

CD14, CD31, CD34, CD45, CD79, CD86, CD117 and glycophorin 

A) (Table 1)[11]. Characterizations of BM-MSCs and their non-

tumorigenic properties have made them a suitable candidate 

for human therapeutic applications, particularly in degenerative 

diseases by autologous cell transplantation[40]. Also, they do not 

induce proliferation of T-lymphocyte in vitro and some reports 

have shown that they prevent the T-cell responses to mitogenic and 

antigenic stimuli. They don’t have the capacity to stimulate B cells 

and are resistant to lysis which has been mediated by thenatural 

killer cell[41,42]. Di Nicola et al[6]indicated that transforming growth 

factor-毬and hepatocyte growth factor block T-cell expansion in 

mixed lymphocyte reaction and T-lymphocytes are suppressed by 

BM-MSCs, and they couldn’t enter apoptosis. 

  Johnson et al[43] reported that there is some evidence showing 

that oocyte might generate from bone marrow in adult mammalian 

ovaries. Their results revealed that bone marrow is a considerable 

origin of germ cells which lead to the continuation of oocyte 

production during adulthood. Moreover, Bukovsky et al[44,45] 

observed that new oocytes might be originated from ovarian cortical 

mesenchymal cells. Nayernia et al[46-50] assessed the capacity of 

BM-MSCs to produce male germ cells and claimed that there is a 

new aspect of germ cell development for the application of BM-

MSCs in reproductive medicine. They also indicated that mouse 

MSCs have the ability for differentiation toward germline stem 

cells in vitro and this relieved that the differentiated cells stop 

progress at premeiotic stages after transplantation into the testes of 

matureinfertile mice[51]. In another study, Drusenheimer et al[52] also 

demonstrated that spermatozoa can be derived and differentiated 

from human BM-MSCs.

4. MSCs derived from umbilical cord

  The umbilical cord  has been located between fetus and mother 

during pregnancy and which is contained a mucous connective 

tissue, known as Wharton’s jelly, between the amniotic epithelium 

and the umbilical vessels[53]. Human umbilical cord is a tissue which 

consists of at least six distinctive zones including from outside to 

innerside: 1) surface epithelium; 2) sub-amniotic stroma; 3) clefts; 4) 

intervascular stroma also known as Wharton’s jelly; 5) perivascular 

stroma; and 6) vessels (Figure 1)[24]. MSCs have been collected 

from several parts of the umbilical cord including umbilicalcord 

blood, umbilical vein sub-endothelium, and the Wharton’s jelly[24]. 

MSCs, which are derived from the human umbilical cord (hUC-

MSCs), share many traits with BM-MSCs, for instance, they have 

low expression capacity for HLA major histocompatibility complex 

class栺,  self-renewal ability and the capacity to be differentiated into 

various cell lineages[24], however, they don’t have the capacity for 

expression of CD31, CD45, HLA major histocompatibility complex 

class栺(Table 1)[54]. They also can be frozen/thawed and extensively 

expanded in culture[39]. Carlin et al[55] was the first one who reported 

the expression of Oct-4, Sox-2, and Nanog markers (some of the 

embryonic stem cell markers) in porcine umbilical cord matrix 

cells. A large body of studies indicated that derived hUC-MSCs 

from extra-embryonic mesoderm, have differentiation potential 

toward osteogenic, adipogenic, chondrogenic lineages[24,56]. The 

hUC-MSCs are able to sustain the normal ovarian physiology and 

decrease the rate of apoptosis in mice model of premature ovarian 

failure[57].

5. MSCs derived from Wharton’s jelly

  The primary role of Wharton’s jelly is the suppression of 

compression and torsion and then support of bidirectional blood flow 

between fetal and maternal circulation and also help the function of 

adventitia[23,58]. Wharton’s jelly is a potential source to be applied in 
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clinical applications due to their lower risk of viral contamination. 

MSCs have been isolated from various zones of Wharton’s jelly, 

sub-amnion region, perivascular zone and the intervascularzone 

(Figure 1). Wharton’s jelly-MSCs (WJ-MSCs) have the ability to 

differentiate toward all three cell lineages. They have the expression 

profile as same as other MSCs (CD29, CD44, CD73, CD105, 

CD73,and CD90) and as embryonic stem cell markers such as 

SSEA-1 and 4, Oct-4, Nanog and Sox-2 (Table 1)[59].

  The higher telomerase activity, the higher proliferative potential, 

shorter expansion doubling times with maintenance of stem cell 

properties that present in WJ-MSCs in compared with MSCs 

derived from adult tissues, indicate that WJ-MSCs are in more 

primitive stage and using them in regenerative medicine has higher 

privileges[55]. The ability of WJ-MSCs to differentiate toward 

particular cell lineage depends partially on secreted growth and 

differentiation factors that are secreted in an environment of a 

particular cell lineage. Bone morphogenetic protein 4 (BMP4) and 

retinoic acid (RA) are two other vital factors which their role in 

differentiation induction has been proved[60]. In vitro studies showed 

that BMP4 induces differentiation of BM-MSCs into primordial 

germ cells[60]. Moreover, Ohta et al[61] have claimed that fetal 

male germ cells have the machinery to respond RA signals and be 

differentiated into germ line cells. Appling co-culture system is 

another safe approach for inducing differentiation of stem cells into 

specific cell lineage and using them for clinical trial purposes[62]. 

  Deferent studies revealed that WJ-MSCs have the innate capacity, 

due to an enhanced proliferation potential and a higher rate of 

colony formation, to be used as an allogeneic cell therapy for 

diseases treatment[63]. Tamura et al[64] indicated that these cells 

produce several secretory proteins which increase the cancer cells 

death and stop the cell cycle as well as are markable decrease in the 

liver fibrosis. There is some evidence that confirms the supportive 

function of WJ-MSCs for other stem cells. For instance, WJ-MSCs 

support embryonic germ cell migration by secretion of glial-derived 

neurotrophic factor, an essential factor to keep the undifferentiated 

status of spermatogonial stem cells[65]. 

  Asgari et al[66] indicated that human WJ-MSCs have the 

gene expression profile as same as primitive genes in oocyte 

developmentafter co-culture with placental cells. They reported that 

supplemented placental cell with transforming growth factor-α毩 and 毬 and 

basic fibroblast growth factor in a co-culture systemis an optimal 

condition which stimulates hUMSCs to be differentiated toward 

primordial germ cells and expresses oocyte-like genes. Amidi et 
al[67] reported that in a co-culture system between WJ-MSCs and 

placenta cells, differentiation potential of MSCs toward male germ-

like cell improved when RA and BMP4 were present.

6. MSCs derived from adipose tissue

  Just like bone marrow, adipose tissue has been originated from 

the mesenchyme and this great source of MSCs has a stroma which 

can be easily isolated[85]. Adipose tissue is another useful source 

of multipotent MSCs which called adipose tissue-derived stromal 

cells (ADSCs). In order to isolate ADSCs, after vigorous digestion 

and following multiple centrifugation steps, the stromal vascular are 

isolated[86]. Zuk et al[87] reported that ADSCs are similar to BM-

MSCs in both differentiation capacities and gene expression[87]. 

They also reported that ADSCs expression levels of CD49d, CD34, 

and CD54 are high; however, the expression of CD106 is much 

higher in BM-MSCs.

7. Conclusion

  Wharton’s jelly, umbilical cord, and bone marrow are rich sources 

of MSCs for investigations and presumptive clinical usages. MSCs 

are ethically reliable, and have a high rate of proliferation and 

sufficient plasticity for such clinical applications. New progress in 

cryopreservation methods will open up recent great achievements 

in MSCs banking and further possibilities for application of cells in 

regenerative medicine. Meanwhile, Wharton’s jelly can be applied 

in regenerative medicine of some reproductive diseases. These cells 

have a considerable potency to be differentiated toward germ-like 

cell lines in appropriate culture condition using BMP4 and RA. 

Therefore, clinical application of Wharton’s jelly has been kept in 

mind as a promising source for regenerative medicine.
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